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a b s t r a c t

The non-equilibrium Green’s function method is applied to the system formed by a quantum-dot (QD)

array side coupled to a one-dimensional quantum wire (QW), which is attached to normal leads. The

system is modelled by a single-band ‘‘tight-binding’’ Hamiltonian with Rashba spin–orbit interaction.

Using the recursive Green function method, independently of the length of the QW and the QD array, the

system is reduced to a three equivalent sites with the effect of the QD array included in the central site,

and the couplings to leads in the two extreme sites. Then, the transmission is studied in two cases:

Firstly, when the QD array is of the same material as that of the QW and it is not magnetic, there is no

preferential spin direction, and the Fano resonances and antiresonaces are analyzed as a function of the

Rashba parameter and local energies in the QD array. Secondly, when the QD array is assumed to be a

metallic ferromagnet, the energy of the up and down states is different and a spin-dependent

transmission is obtained.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The study of spin-dependent transmission is a main area of
research in mesoscopic devices, where interaction and inter-
ference phenomena define the properties of quantum transport.
On the one hand, the Rashba spin–orbit interaction (RSOI) plays a
fundamental role as a scattering mechanism between the up (m)
and down (k) spin states of the electron in a quantification
axis. Many studies along these lines, both theoretical [1–9]
and experimental [10,11], have been carried out. On the other
hand, interference effects between a bound state immersed in a
continuous band and the continuum have been used to produce
Fano resonances (perfect transmission) and antiresonances (zeros
of transmission) in the conductance of a quasi-one-dimensional
(Q1D) electron guide [12]; of a quantum wire (QW) with a side-
coupled quantum-dot (QD) array [13]; of a double QD molecule
attached to leads [14]; and also, the Fano effect has been
experimentally observed in a QD side-coupled to QW [15]. A first
proposal of a spin filter [16] uses a one-dimensional ring subject
to a magnetic field that originate a Zeeman splitting which results
in different adiabatic transmission components, Tkm4Tmk; while
the nonadiabatic components are the same, Tmm ¼ Tkk. However,
in [12–16] the RSOI was not taken into account. Kiselev and Kim

[17] show how to get spin-polarized fluxes in three (at least)
terminal devices, only considering Rashba spin–orbit coupling.
Later [6,7], it is shown how the RSOI can create Fano lineshapes
in the transmission of a quasi-one-dimensional quantum wire.
Therefore, various resonant structures with RSOI have been
analyzed, like a Rashba QD subject to a magnetic field and
coupled to ferromagnetic leads [18]; a T-shaped double QD [19]; a
T-shaped waveguide [20,21] and spin filters based on quantum
rings [22,23].

In this work, first, a quasi-one-dimensional system formed by
two conductors that are coupled, is analyzed; and the Green’s
functions of the whole system are expressed in terms of those of
the isolated conductors and the coupling between them. Then,
these results are applied to a one-dimensional system formed by a
QD array side-coupled to a QW considering RSOI and with the QW
connected to normal leads. The non-equilibrium Green‘s function
method [24,25] is used to compute the spin-dependent transmis-
sions Tss0 s, s0 ¼ mk, at zero temperature. If we do not consider
electron–electron interaction, as in [8,13,18,21], we see that every
site in the system can be described by a 2�2 Green’s function
matrix. Then, the system is reduced to three generalized
(equivalent) sites which take into account the whole system and
its coupling to leads. When the QD array is of the same material
as the QW there exists time-reversal symmetry, so there is no
preferential spin, and the results can be seen as an extension to
[13,26]. When the QD array is assumed to be a magnetic material
with energy levels at each dot et0m ¼ �et0k ¼ �et0, we get
TmmaTkk and Tmk ¼ Tkm.
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2. Theory

2.1. Quasi-one-dimensional system

We consider the isolated conductors C1 and C2 of dimensions
nx1 sites in x axis and nc1 in y axis for C1, and similarly nx2, nc2
for C2. Each one is described by its Q1D single-band tight-binding
Hamiltonian including RSOI, H1 and H2, respectively; and let H12

be, the interaction between them when the site column at i ¼ nx1
of C1 is coupled to the site column i ¼ 1 of C2. Then, the
Hamiltonian of the total system H, will be [2]

H ¼ H1 þ H2 þ H12 (1a)

H12 ¼ tac1
x

Xnc1

k¼1;s¼"#
½CC2;þ

1ks CC1
nx1;ks þ h:c:�

� tac1
SO

Xnc1

k¼1

½CC1;þ
nx1;k"C

C2
1k# � CC1;þ

nx1;k#C
C2
1k" þ h:c:� (1b)

where CC1
iks

,+, CC1
iks

,+, CC2
iks

,+ and CC2
iks

,+, 1pipnx1,nx2, 1pkpnc1,nc2,
s ¼ mk, with nc1pnc2; are the creation and destruction operators
in C1 and C2, respectively. The equation of motion method is
applied to the retarded Green‘s functions of H [25]. They can
be grouped in: GR

i1js;i10 j0s0 (t�t0), with the two sites in C1; the first
site in C1 and the second one in C2, GR

i1js;i20 j0s0 (t�t0); the first site in
C2 and the second one in C1, GR

i2js;i10 j0s0 (t�t0) and; GR
i2js;i20 j0s0 (t�t0),

with the two sites in C2. Then, making the Fourier transform, we
arrive at

ðGR0
C1�C1Þ

�1GR
C1;n1 ¼ In1 þ A1GR

C2;n1 (2a)

ðGR0
C2�C2Þ

�1GR
C2;n1 ¼ A1þGR

C1;n1 (2b)

where GR0
C1�C1 and GR0

C2�C2 are the square matrix of Green’s
functions of the isolated C1 and C2, respectively; GR

C1;n1 and
GR

C2;n1 the column vector of Green‘s functions of the complete
system, with n1 belonging to C1; In1 the column vector with a 1 at
row n1 and 0 in the remaining rows and; A1 the coupling matrix
between C1 and C2 (dimension equal to 2 �nx1 �nc1�2 �nx2 �nc2).
Similar equations to (2a) and (2b) can be written with C1-C2,
C2-C1, n1-n2 and A1-A1+. Eqs. (2a) and (2b) can be shown as
the recursive Green’s function method [9,27,28], applied to our
problem.

2.2. One-dimensional system with RSOI

Now, we consider the one-dimensional system with RSOI shown
in Fig. 1, which is formed by a quantum wire (initially a three-site

chain) with a side-coupled quantum-dot array (transversal chain,
TC) attached to the QW [7,13]. The Hamiltonian is H ¼ HL+HL1+
Hcen+HCTC+HTC+H3R+HR, where HL and HR are the Hamiltonians of the
left (L) and right (R) lead; HL1 is the coupling between L and the site
1 of the QW; Hcen is the Hamiltonian of the isolated QW; HCTC is the
coupling between the site 2 of the QW and the site 1 of the TC; HTC is
the Hamiltonian of the isolated QD array of length NT dots; and H3R

is the coupling between the site 3 of the QW and R. So we have

HL1 ¼
X

k2L;s¼"#
ðtLCþksC1s þ h:c:Þ (3a)

Hcen ¼
X3

l¼1;s
�lsCþlsCls þ

X
s¼"#
ðtx1Cþ1sC2s þ tx2Cþ2sC3s þ h:c:Þ

� tL
SOðC

þ
1"C2# þ Cþ2#C1" � Cþ1#C2" � Cþ2"C1#Þ

� tR
SOðC

þ

2"C3# þ Cþ3#C2" � Cþ2#C3" � Cþ3"C2#Þ (3b)

HCTC ¼
X
s¼"#
ðty0Cþ2sCt1s þ h:cÞ:

þ itC
SOðC

þ

2"Ct1# � Cþt1#C2" þ Cþ2#Ct1" � Cþt1"C2#Þ (3c)

HTC ¼
XNT

m¼1;s
�tmsCþtmsCtms þ

XNT�1

m;s
ðtyCþtmsCtmþ1;s þ h:c:Þ

þ itt
SO

XNT�1

m

ðCþtm"Ctmþ1# þ Cþtm#Ctmþ1"

� Cþtmþ1#Ctm" � Cþtmþ1"Ctm#Þ (3d)

H3R ¼
X

k2R;s¼"#
ðtRCþksC3s þ h:c:Þ (3e)

The quantum-dot array can be considered as if the first QD would
be coupled to the remaining chain, the latter being described
by a 2�2 Green’s function matrix. That remaining chain can be
considered as the generalized transversal site label as 2 [26]; so,
denoting such Green’s functions by GR;S2

t2";t2", GR;S2
t2";t2#, GR;S2

t2";t2# and
GR;S2

t2#;t2#, and using Eqs. (2a) and (2b) with n1 ¼ t1m or t1k, it follows
that:

�� �t1" 0

0 �� �t1#

 ! GR;S1
t1";n1

GR;S1
t1#;n1

0
B@

1
CA ¼ In1 þ

ty itt
SO

itt
SO ty

 !

�

GR;S2
t2";t2" GR;S2

t2";t2#

GR;S2
t2#;t2" GR;S2

t2#;t2#

0
B@

1
CA t�y �itt

SO

�itt
SO t�y

0
@

1
A GR;S1

t1";n1

GR;S1
t1#;n1

0
B@

1
CA (4)

In fact, the three sites in the QW can be considered the sites
(nx1�1), nx1 and (nx1+1) of a larger wire, with tnx1�2 the hopping
between the states at (nx1�2) and (nx1�1) of the same spin, tx1-

tnx1�1 and tx2-tnx1 and; tL
SO and tR

SO would represent the RSOI in the
QW to the left and right of nx1, respectively. Now, we consider the
subsystem to the left of nx1�1, which is formed by: all the sites in
the QW with 1plpnx1�2, the left lead and the coupling between
them. Such a subsystem is described by the 2�2 Green’s function
matrix GR;IS

ðnx1�2;sÞ s ¼ mk; so, it can be written as

gR
nx1�1";nx1�1" gR

nx1�1";nx1�1#

gR
nx1�1#;nx1�1" gR

nx1�1#;nx1�1#

0
@

1
A
�1

GR;IS
nx1�1";nx1�1" GR;IS

nx1�1";nx1�1#

GR;IS
nx1�1#;nx1�1" GR;IS

nx1�1#;nx1�1#

0
B@

1
CA ¼ I

þ
t�nx1�2 tL

SO

�tL
SO t�nx1�2

0
@

1
AGR;IS
ðnx1�2;sÞ

tnx1�2 �tL
SO

tL
SO tnx1�2

0
@

1
A

�

GR;IS
nx1�1";nx1�1" GR;IS

nx1�1";nx1�1#

GR;IS
nx1�1#;nx1�1" GR;IS

nx1�1#;nx1�1#

0
B@

1
CA (5)
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Fig. 1. A quantum-dot array side coupled to a quantum wire decomposed in its

states up (m) and down (k), showing the RSOI.
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where g(nx1�1,s)
R, is the Green’s function matrix of the isolated

site nx1�1, with (gR
nx1�1s;nx1�1s)�1

¼ e�enx1�1s, s ¼ mk and
gR

nx1�1";nx1�1# ¼ gR
nx1�1#;nx1�1" ¼ 0; GR;IS

ðnx1�1;sÞ the Green’s function
matrix of the generalized site nx1�1, decoupled from the
generalized sites nx1 and nx1+1. A similar equation to (5) can be
written for the generalized site nx1, which would include the effect
of the transversal chain. Also, for the generalized site nx1+1 an
equation like (5), which includes the right lead and its coupling to
the QW, is obtained. Now, considering the coupling between these
three equivalent sites, the following equation for the retarded
Green’s functions of the complete system, can be reached:

½GR;IS
ðnx1�1;sÞ�

�1
�tnx1�1 tL

SO

�tL
SO �tnx1�1

0 0

0 0

�t�nx1�1 �tL
SO

tL
SO �t�nx1�1

½GR;IS
ðnx1;sÞ�

�1
�tnx1 tR

SO

�tR
SO tnx1

0 0

0 0

�t�nx1 �tR
SO

tR
SO �t�nx1

½GR;IS
ðnx1þ1;sÞ�

�1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

�

GR
nx1�1";n

GR
nx1�1#;n

GR
nx1";n

GR
nx1#;n

GR
nx1þ1";n

GR
nx1þ1#;n

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

¼ In (6)

with n equal to anyone of the six possible states. Eq. (6) is a Dyson
equation of the system described by the Hamiltonian H, and can be
written like (g�1

�
PR) �GR

¼ I,
PR being the retarded self-energy.

The level-width function is given by

G ¼ i
XR
� ð
XR
Þ
�

h i
¼

GL
"" GL

"# 0 0 0 0

GL
#" GL

## 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 GR
"" GR

"#

0 0 0 0 GR
#" GR

##

0
BBBBBBBBBB@

1
CCCCCCCCCCA
¼ GL

þ GR

(7)

In general, GL;R
ss0 s, s0 ¼ mk will be different of zero, since we are

dealing with the subsystems (nx1�1) and (nx1+1); which take into
account the single site and all that exits to the left and right of that
single site; in particular, the RSOI along the QW and the coupling to
the left and right leads. At zero temperature, using the formula for
the transmission [24,25] T ¼ Tr{GLGRGRGA} and; considering GL(GR)
as the 2�2 matrix resulting from keeping only the first (last) two
rows and columns of Eq. (7); the following expressions are
obtained:

T ¼ TrfGLGR
ðnx1�1s;nx1þ1s0 ÞG

RGA
ðnx1þ1s0 ;nx1�1sÞg ¼ T"" þ T"# þ T#" þ T##

(8a)

Tss ¼
X

s0s00¼"#
GL
ss0G

R
nx1�1;s0nx1þ1;s00G

R
s00s

 !
ðGR

nx1�1;snx1þ1sÞ
� (8b)

Tss̄ ¼
X

s0s00¼"#
GL
ss0G

R
nx1�1;s0nx1þ1;s00G

R
s00s̄

 !
ðGR

nx1�1;snx1þ1;s̄Þ
� (8c)

It is clear that in Tmm there will be contributions from paths that
begin in an up state at the left lead; due to the RSOI, that path
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Fig. 2. Transmission Tmm( ¼ Tkk) with NT ¼ 4 and for different value pairs of et0 and tt
SO:tt

SO ¼ 0.1, et0 ¼ 0.0, solid line; tt
SO ¼ 0.2, et0 ¼ �0.3, dashed line and tt

SO ¼ 0.4,

et0 ¼ �0.6 dash–dot line.
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passes through down states along the QW and reaches the state
(nx1�1,m).

3. Results and discussion

The numerical results can be classified in two groups
depending on whether the material of the QW is the same as
that one of the TC or not. The coupling to the leads is specified
by a retarded self-energy

PR
L;R ¼ LL,R+iGL,R/2, independent of the

energy as in [26], with LL,R ¼ 0 and GL,R ¼ 1.0. When the materials
are the same, no magnetic and uniform, tx ¼ ty0 ¼ ty ¼ t, tSO

L
¼

tSO
C
¼ tSO

R
¼ tSO

W
¼ tSO

t and, by time-reversal symmetry Tmm ¼

Tkk and Tmk ¼ Tkm. Being els of the QW and etms of the TC equal to
zero, the centre of the energy band is zero. Then, it is found that

when NX ¼ 3 (odd) and NT is odd, Tmm( ¼ Tkk) ¼ 0 at e ¼ 0;
whereas if NT is even, because of the RSOI, Tmm(e ¼ 0) is slightly
less than 1, but Tmm+Tmk ¼ 1. With NX even and NT odd, we have
also Tmm(e ¼ 0) ¼ 0; but now, when NT is even Tmm+Tmk is notably
less than 1 (no perfect transmission). Since we take into account
the length of the QW, its coupling to the leads and the RSOI,
these results are an extension of those in [13,26]. From now
on, a quantum wire with only three sites is considered, so that
Gmk

L,R
¼ Gkm

L,R
¼ 0; and Eq. (6) is solved to compute the 2�2 matrix

G(1s,3s0)
R. Applying a gate voltage (Vg) only to the transversal chain,

the energies etms of the quantum dots and the Rashba parameter
tSO

t modify simultaneously. Fig. 2 shows Tmm( ¼ Tkk) as a function
of the energy with t ¼ 1.0, els ¼ 0, tSO

W
¼ 0.1, NT ¼ 4 and various

value pairs of etms ¼ et0 (for any m and s) and tSO
t; corresponding

to a given value of Vg. We have chosen arbitrarily, tt
SO ¼ 0.1,
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Fig. 3. Transmissions Tmm (dashed line) and Tkk (dash–dot line) when the transversal chain is a magnetic material with et0m ¼ �et0k ¼ �et0 ¼ �0.2 (a), and et0 ¼ 0.4 (b). For

reference, the curve with et0 ¼ 0 is also shown (solid line).

J.A. Casao-Pérez / Physica E 41 (2009) 1323–13281326



Author's personal copy

et0 ¼ 0.0; tt
SO ¼ 0.2, et0 ¼ �0.3 and tt

SO ¼ 0.4, et0 ¼ �0.6. It can be
shown that the zeros of the transmission are at �i0 ¼

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3�

ffiffiffi
5
p
Þ=2

q
� jtyj, i ¼ 1, 2, 3 and 4; if we do not consider the

RSOI in the transversal chain and without Vg applied. These
antiresonances occur whenever the energy of the electron agrees
with an eigenvalue of the QD array [12–14,19]. There are two
reasons that explain the movement of these zeros when Vg varies.
First, obviously, et0 will be different from zero; so the role of e is
now played by e�et0; therefore the zeros will be at et0+ei0.
Secondly, tSO

t will increase or decrease from its value when Vg ¼ 0
depending on the sign of Vg; and it has been verified that if only
tSO

t is increased maintaining et0 ¼ 0, the zeros move slightly from
their initial positions: the positive ones towards higher levels and
the negative towards even more negative values. It is shown in
Fig. 2 that the maxima of Tmm are not dependent of the Rashba
parameter tSO

t in the transversal chain; they depend only on the
RSOI in the QW. In case of identical materials for the QW and
the TC, the zeros of Tmm are also of Tmk( ¼ Tkm); actually, Tmk is a
copy of Tmm but with a notably reduced value.

A major application of the setup of Fig. 1, is when the
transversal chain is formed by a uniform magnetic material in
which et0m ¼ �et0k ¼ �et0, and the QW is a normal conductor.
Then, TmmaTkk. In Figs. 3 and 4 the QW is characterized by the
same parameters as above; the coupling of the TC to the QW
is specified by ty0 ¼ 1.0 and tC

SO ¼ 0.1; and the TC considered
as ty ¼ 1.0, NT ¼ 3, tt

SO ¼ 0.1, et0 ¼ 0.2 in (a) and et0 ¼ 0.4 in (b).
For reference, the curve with et0m ¼ et0k ¼ 0 is also displayed
showing the three zeros of transmission and the two resonances
in the energy band. Now Tmm(e) ¼ Tkk(�e), and at the Fano
antiresonances we can get a perfect cancellation of spin-
down transmission Tkk ¼ 0 (or Tmm ¼ 0), and a high spin-up
transmission (and a high Tkk). For instance, in Fig. 3a at eE�1.2
Tkk ¼ 0 and Tmm takes a maximum value. Also, the zero of Tmm at
approximately �1.6 is to the right of the maximum of Tkk at
	�1.75. From Fig. 3b, it is shown that the zero of Tmm has moved to
a more negative value while the maximum of Tkk has moved in
the opposite direction; so, there must exist a value of et0 in which
the spin polarization of the transmission, given by PT ¼ (Tmm�Tkk)/
(Tmm+Tkk+Tmk+Tkm) [16,23], is very near to 71.0. Results of this

kind are also found in [22] using a QD ring side-coupled to a QW,
and in [18] with a two-level QD created by an applied magnetic
field and coupled to ferromagnetic leads. In the negative interval
of energy, when et0 increases, the maxima of Tmm hardly reduce
while those of Tkk decrease significantly; in the positive range
of energies Tmm and Tkk change their roles. This reduction of Tkk
and Tmm in different ranges of energy when the separation
between the two levels rise, is related to the increase of
Tmk( ¼ Tkm), as shown in Fig. 4. Note that Tmk(e) ¼ Tmk(�e).
Simulations with NT ¼ 2, 4 and 5 were done. The higher NT is,
there will be the more resonances and antiresonances, they will
be narrower and; the scattering between the up and down levels
in the TC will be higher. Therefore, with a fixed et0, Tmk will be
more remarkable. These results show that the device in Fig. 1 is a
robust candidate to build a spin filter.

4. Summary

In summary, the non-equilibrium Green’s function method has
been used to calculate the spin-dependent transmission of a QD
array side-coupled to a QW which is attached to leads. RSOI
through the QD array and the QW are considered, and the
recursive Green’s function method is used to reduce the whole
system to a chain of three equivalent sites. When the QD array
is made of a magnetic material with etm ¼ �etk ¼ �et0; it is shown
that there are values of et0 in which the spin polarization
transmission can be very near to 1.0; that is, this device is a
candidate to be a spin filter.
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